Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Chemosphere ; 352: 141364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336034

RESUMO

Diverse paths generated by reactive oxygen species (ROS) can mediate contaminant transformation and fate in the soil/aquatic environments. However, the pathways for ROS production upon the oxygenation of redox-active ferrous iron minerals are underappreciated. Ferrihydrite (Fh) can be reduced to produce Fe(II) by Shewanella oneidensis MR-1, a representative strain of dissimilatory iron-reducing bacteria (DIRB). The microbial reaction formed a spent Fh product named mr-Fh that contained Fe(II). Material properties of mr-Fh were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Magnetite could be observed in all mr-Fh samples produced over 1-day incubation, which might greatly favor the Fe(II) oxygenation process to produce hydroxyl radical (•OH). The maximum amount of dissolved Fe(II) can reach 1.1 mM derived from added 1 g/L Fh together with glucose as a carbon source, much higher than the 0.5 mM generated in the case of the Luria-Bertani carbon source. This may confirm that MR-1 can effectively reduce Fh and produce biogenetic Fe(II). Furthermore, the oxygenation of Fe(II) on the mr-Fh surface can produce abundant ROS, wherein the maximum cumulative •OH content is raised to about 120 µM within 48 h at pH 5, but it is decreased to about 100 µM at pH 7 for the case of MR-1/Fh system after a 7-day incubation. Thus, MR-1-mediated Fh reduction is a critical link to enhance ROS production, and the •OH species is among them the predominant form. XPS analysis proves that a conservable amount of Fe(II) species is subject to adsorption onto mr-Fh. Here, MR-1-mediated ROS production is highly dependent on the redox activity of the form Fe(II), which should be the counterpart presented as the adsorbed Fe(II) on surfaces. Hence, our study provides new insights into understanding the mechanisms that can significantly govern ROS generation in the redox-oscillation environment.


Assuntos
Compostos Férricos , Shewanella , Espécies Reativas de Oxigênio/metabolismo , Compostos Férricos/química , Minerais/química , Ferro/química , Oxirredução , Shewanella/metabolismo , Óxido Ferroso-Férrico/metabolismo , Carbono/metabolismo
2.
Environ Sci Technol ; 57(43): 16399-16413, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862709

RESUMO

It is known that the presence of sulfate decreases the methane yield in the anaerobic digestion systems. Sulfate-reducing bacteria can convert sulfate to hydrogen sulfide competing with methanogens for substrates such as H2 and acetate. The present work aims to elucidate the microbial interactions in biogas production and assess the effectiveness of electron-conductive materials in restoring methane production after exposure to high sulfate concentrations. The addition of magnetite led to a higher methane content in the biogas and a sharp decrease in the level of hydrogen sulfide, indicating its beneficial effects. Furthermore, the rate of volatile fatty acid consumption increased, especially for butyrate, propionate, and acetate. Genome-centric metagenomics was performed to explore the main microbial interactions. The interaction between methanogens and sulfate-reducing bacteria was found to be both competitive and cooperative, depending on the methanogenic class. Microbial species assigned to the Methanosarcina genus increased in relative abundance after magnetite addition together with the butyrate oxidizing syntrophic partners, in particular belonging to the Syntrophomonas genus. Additionally, Ruminococcus sp. DTU98 and other species assigned to the Chloroflexi phylum were positively correlated to the presence of sulfate-reducing bacteria, suggesting DIET-based interactions. In conclusion, this study provides new insights into the application of magnetite to enhance the anaerobic digestion performance by removing hydrogen sulfide, fostering DIET-based syntrophic microbial interactions, and unraveling the intricate interplay of competitive and cooperative interactions between methanogens and sulfate-reducing bacteria, influenced by the specific methanogenic group.


Assuntos
Euryarchaeota , Sulfeto de Hidrogênio , Óxido Ferroso-Férrico/metabolismo , Biocombustíveis , Sulfeto de Hidrogênio/metabolismo , Euryarchaeota/metabolismo , Anaerobiose , Bactérias/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Metano , Sulfatos , Reatores Biológicos
3.
Chemosphere ; 339: 139626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487980

RESUMO

This study evaluated the effects of acetone on the anaerobic degradation of synthetic latex wastewater, which was simulated from the wastewater of the deproteinized natural rubber production process, including latex, acetate, propionate, and acetone as the main carbon sources, at a batch scale in 5 cycles of a total of 60 days. Fe3O4 was applied to accelerate the treatment performance from cycle 3. Acetone was added in concentration ranges of 0%, 0.05%, 0.1%, 0.15%-included latex, and 0.15%-free latex (w/v). In the Fe3O4-free cycles, for latex-added vials, soluble chemical oxygen demand (sCOD) was removed at 43.20%, 43.20%, and 12.65%, corresponding to the input acetone concentrations varying from 0.05% to 0.15%, indicating the interference of acetone for COD reduction. After adding Fe3O4, all flasks reported a significant increase in COD removal efficiency, especially for acetone-only and latex-only vials, from 36.9% to 14.30%-42.95% and 83.20%, respectively. Other highlighted results of COD balance showed that Fe3O4 involvement improved the degradation process of acetate, propionate, acetone, and the other COD parts, including the intermediate products of latex reduction. Besides, during the whole batch process, the order of reduction priority of the carbon sources in the synthetic wastewater was acetate, propionate and acetone. We also found that the acetate concentration appeared to be strongly related to reducing other carbon sources in natural rubber wastewater. Microbial community analysis revealed that protein-degrading bacteria Bacteroidetes vadinHA17 and Proteinniphilum and methylotrophic methanogens might play key roles in treating simulated deproteinized-natural-rubber wastewater.


Assuntos
Látex , Águas Residuárias , Látex/metabolismo , Óxido Ferroso-Férrico/metabolismo , Anaerobiose , Acetona , Borracha , Propionatos , Reatores Biológicos/microbiologia , Carbono , Acetatos , Eliminação de Resíduos Líquidos/métodos
4.
Am J Obstet Gynecol MFM ; 5(9): 101063, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348817

RESUMO

BACKGROUND: Anemia in pregnancy is common worldwide and has known maternal risks. The relationship between the types of treatment offered for maternal anemia and the effects on the fetus and newborn are largely uninvestigated. OBJECTIVE: This study aimed to investigate whether maternal treatment with intravenous ferumoxytol compared to oral ferrous sulfate results in an increase in neonatal hematologic and iron indices. These analyses were planned secondary outcomes and post hoc analysis from the trial with a primary outcome of change in maternal hemoglobin. STUDY DESIGN: A randomized controlled trial including 124 participants with anemia by World Health Organization criteria was performed in which participants were allocated in a 1:1 ratio to either 2 infusions of 510 mg of intravenous ferumoxytol or 325 mg oral ferrous sulfate twice daily. Fetal monitoring was performed during each intravenous iron infusion. Standard univariable statistical techniques were used to compare groups and to investigate associations between maternal and neonatal hemoglobin and iron indices. RESULTS: Cord blood hematological parameters were equivalent between groups. Hemoglobin was 15.7 g/dL vs 15.4 g/dL (P=.6) and hematocrit was 50.5% and 49.2% (P=.4) in those randomized to intravenous ferumoxytol and oral ferrous sulfate, respectively. Iron studies revealed higher cord blood ferritin concentrations in infants of participants treated with intravenous ferumoxytol (294 vs 186, P=.005). There were equivalent iron (158 vs 146, P=.4), transferrin (186 vs 196, P=.4) and total iron binding capacity (246 vs 244, P=1) in neonates of participants receiving intravenous vs oral treatment. There were no effects of the infusions observed on cardiotocography. Gestational age at birth was equivalent between groups. We noted a larger birthweight in neonates of participants treated with intravenous ferumoxytol (3215 g vs 3033 g, P=.09), which was not statistically significant. Post hoc analyses revealed a statistically significant correlation between neonatal ferritin and maternal hemoglobin (P=.006) and neonatal ferritin and maternal ferritin (P=.017) at admission for delivery. CONCLUSION: Neonates of participants who received intravenous ferumoxytol were born with higher ferritin concentrations in cord blood, at the same gestation with the same birthweight. Participants with higher hemoglobin and ferritin indices delivered infants with higher ferritin concentrations in cord blood.


Assuntos
Anemia Ferropriva , Óxido Ferroso-Férrico , Gravidez , Recém-Nascido , Lactente , Feminino , Humanos , Óxido Ferroso-Férrico/efeitos adversos , Óxido Ferroso-Férrico/metabolismo , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/epidemiologia , Peso ao Nascer , Ferro/metabolismo , Ferritinas , Hemoglobinas/análise , Hemoglobinas/metabolismo
5.
Microbiol Immunol ; 67(5): 228-238, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892203

RESUMO

Magnetotactic bacteria (MTB) generate a membrane-enclosed subcellular compartment called magnetosome, which contains a biomineralized magnetite or greigite crystal, an inner membrane-derived lipid bilayer membrane, and a set of specifically targeted associated proteins. Magnetosomes are formed by a group of magnetosome-associated proteins encoded in a genomic region called magnetosome island. Magnetosomes are then arranged in a linear chain-like positioning, and the resulting magnetic dipole of the chain functions as a geomagnetic sensor for magneto-aerotaxis motility. Recent metagenomic analyses of environmental specimens shed light on the sizable phylogenetical diversity of uncultured MTB at the phylum level. These findings have led to a better understanding of the diversity and conservation of magnetosome-associated proteins. This review provides an overview of magnetosomes and magnetosome-associated proteins and introduces recent topics about this fascinating magnetic bacterial organelle.


Assuntos
Magnetossomos , Magnetossomos/química , Magnetossomos/metabolismo , Magnetossomos/ultraestrutura , Proteínas de Bactérias/metabolismo , Bactérias/genética , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/metabolismo , Bactérias Gram-Negativas
6.
Appl Environ Microbiol ; 89(3): e0217522, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36853045

RESUMO

The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.


Assuntos
Arsênio , Geobacter , Compostos Férricos/metabolismo , Antimônio , Arsênio/metabolismo , Minerais/metabolismo , Óxido Ferroso-Férrico/metabolismo , Geobacter/metabolismo , Oxirredução
7.
BMC Genomics ; 23(1): 699, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217140

RESUMO

BACKGROUND: One of the most complex prokaryotic organelles are magnetosomes, which are formed by magnetotactic bacteria as sensors for navigation in the Earth's magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense magnetosomes consist of chains of magnetite crystals (Fe3O4) that under microoxic to anoxic conditions are biomineralized within membrane vesicles. To form such an intricate structure, the transcription of > 30 specific structural genes clustered within the genomic magnetosome island (MAI) has to be coordinated with the expression of an as-yet unknown number of auxiliary genes encoding several generic metabolic functions. However, their global regulation and transcriptional organization in response to anoxic conditions most favorable for magnetite biomineralization are still unclear. RESULTS: Here, we compared transcriptional profiles of anaerobically grown magnetosome forming cells with those in which magnetosome biosynthesis has been suppressed by aerobic condition. Using whole transcriptome shotgun sequencing, we found that transcription of about 300 of the > 4300 genes was significantly enhanced during magnetosome formation. About 40 of the top upregulated genes are directly or indirectly linked to aerobic and anaerobic respiration (denitrification) or unknown functions. The mam and mms gene clusters, specifically controlling magnetosome biosynthesis, were highly transcribed, but constitutively expressed irrespective of the growth condition. By Cappable-sequencing, we show that the transcriptional complexity of both the MAI and the entire genome decreased under anaerobic conditions optimal for magnetosome formation. In addition, predominant promoter structures were highly similar to sigma factor σ70 dependent promoters in other Alphaproteobacteria. CONCLUSIONS: Our transcriptome-wide analysis revealed that magnetite biomineralization relies on a complex interplay between generic metabolic processes such as aerobic and anaerobic respiration, cellular redox control, and the biosynthesis of specific magnetosome structures. In addition, we provide insights into global regulatory features that have remained uncharacterized in the widely studied model organism M. gryphiswaldense, including a comprehensive dataset of newly annotated transcription start sites and genome-wide operon detection as a community resource (GEO Series accession number GSE197098).


Assuntos
Magnetossomos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomineralização/genética , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetospirillum , Fator sigma/genética , Transcriptoma
8.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142217

RESUMO

Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron.


Assuntos
Magnetossomos , Magnetospirillum , Proteínas de Bactérias/química , FMN Redutase/metabolismo , Óxido Ferroso-Férrico/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro/metabolismo , Lipídeos/análise , Lipossomos/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Proteínas de Membrana/metabolismo , NAD/metabolismo , Ubiquitinas/metabolismo
9.
Adv Sci (Weinh) ; 9(28): e2203444, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35975419

RESUMO

Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3 S4 ) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe3 S4 ) and magnetite (Fe3 O4 ) in the cytoplasm is reported. BW-1 produces hundreds of spherical nanoparticles, composed of 1-2 nm substructures of a poorly crystalline hexagonal copper sulfide structure that remains in a thermodynamically unstable state. The particles appear to be surrounded by an organic matrix as found from staining and electron microscopy inspection. Differential proteomics suggests that periplasmic proteins, such as a DegP-like protein and a heavy metal-binding protein, could be involved in this biomineralization process. The unexpected periplasmic formation of copper sulfide nanoparticles in BW-1 reveals previously unknown possibilities for intracellular biomineralization that involves intriguing biological control and holds promise for biological metal recovery in times of copper shortage.


Assuntos
Magnetossomos , Nanopartículas , Proteínas Periplásmicas , Bactérias , Biomineralização , Cobre , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/metabolismo , Ferro , Magnetossomos/química , Magnetossomos/metabolismo , Proteínas Periplásmicas/análise , Proteínas Periplásmicas/metabolismo , Sulfetos/análise , Sulfetos/metabolismo
10.
An Acad Bras Cienc ; 94(3): e20210917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35920489

RESUMO

Molecular machines, as exemplified by the kinesin and microtubule system, are responsible for molecular transport in cells. The monitoring of the cellular machinery has attracted much attention in recent years, requiring sophisticated techniques such as optical tweezers, and dark field hyperspectral and fluorescence microscopies. It also demands suitable procedures for immobilization and labeling with functional agents such as dyes, plasmonic nanoparticles and quantum dots. In this work, microtubules were co-polymerized by incubating a tubulin mix consisting of 7 biotinylated tubulin to 3 rhodamine tubulin. Rhodamine provided the fluorescent tag, while biotin was the anchoring group for receiving streptavidin containing species. To control the microtubule alignment and consequently, the molecular gliding directions, functionalized iron oxide nanoparticles were employed in the presence of an external magnet field. Such iron oxide nanoparticles, (MagNPs) were previously coated with silica and (3-aminopro-pyl)triethoxysilane (APTS) and then modified with streptavidin (SA) for linking to the biotin-functionalized microtubules. In this way, the binding has been successfully performed, and the magnetic alignment probed by Inverted Fluorescence Microscopy. The proposed strategy has proved promising, as tested with one of the most important biological structures of the cellular machinery.


Assuntos
Biotina , Tubulina (Proteína) , Biotina/análise , Biotina/química , Biotina/metabolismo , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/metabolismo , Fenômenos Magnéticos , Microscopia de Fluorescência , Microtúbulos/química , Microtúbulos/metabolismo , Rodaminas/análise , Rodaminas/metabolismo , Estreptavidina/análise , Estreptavidina/química , Estreptavidina/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo
11.
Toxicol Sci ; 189(2): 287-300, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35913497

RESUMO

Fine particulate matter (PM) is a leading environmental cause for the increased morbidity and mortality of atherosclerosis (AS) worldwide, but little is known about the toxic component and disturbance of PM exposure on foam cell formation, a crucial pathological process in AS. Airborne magnetite nanoparticles (NPs) have been reported to be detected in human serum, which inevitably encounter with macrophages in atherosclerotic plaques, thus throwing potential disturbance on the formation of macrophage-derived foam cells. Here we comprehensively unveiled that the environmental concentrations of PM exposure triggered and potentiated the formation of macrophage-derived foam cells using both real-ambient PM-exposed mice and AS mice models, including high-fat diet-fed mice and apolipoprotein E-deficient mice. The in vitro model further defined the dose-dependent response of PM treatment on foam cell formation. Interestingly, airborne magnetite NPs rather than nonmagnetic NPs at the same concentration were demonstrated to be the key toxic component of PM in the promoted foam cell formation. Furthermore, magnetite NPs exposure led to abnormal cholesterol accumulation in macrophages, which was attributed to the attenuation of cholesterol efflux and enhancement of lipoprotein uptake, but independent of cholesterol esterification. The in-depth data revealed that magnetite NPs accelerated the protein ubiquitination and subsequent degradation of SR-B1, a crucial transporter of cholesterol efflux. Collectively, these findings for the first time identified magnetite NPs as one key toxic component of PM-promoted foam cell formation, and provided new insight of abnormal cholesterol metabolism into the pathogenesis of PM-induced AS.


Assuntos
Aterosclerose , Nanopartículas de Magnetita , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Colesterol/metabolismo , Óxido Ferroso-Férrico/metabolismo , Células Espumosas/patologia , Homeostase , Humanos , Lipoproteínas LDL/metabolismo , Nanopartículas de Magnetita/toxicidade , Camundongos , Material Particulado/metabolismo , Material Particulado/toxicidade
13.
Bioresour Technol ; 359: 127448, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35691503

RESUMO

A conductive metal compound can be used as a catalyst for enhancing hydrogen production by dark fermentation. This study aimed to identify mechanisms of enhanced hydrogen production by magnetite supplementation. Experiments were performed with lactate and/or magnetite supplementation to confirm that the lactate-utilizing pathway is the key cause of enhanced hydrogen production. Also, ribonucleic acid sample was collected for monitoring gene regulation under each condition. Hydrogen production was significantly enhanced by approximately 25.6% and 58.9%, respectively, via magnetite alone and with lactate. Moreover, the expression of genes involved in hydrogen production, including pyruvate ferredoxin oxidoreductase, hydrogenase, and ferredoxin, via magnetite alone and with lactate was upregulated by 0.26, 0.71, and 3.50 and 1.06, 2.14, and 1.94 times, respectively.


Assuntos
Clostridium butyricum , Aceleração , Clostridium/metabolismo , Clostridium butyricum/metabolismo , Suplementos Nutricionais , Fermentação , Óxido Ferroso-Férrico/metabolismo , Hidrogênio/metabolismo , Ácido Láctico/metabolismo
14.
Bioresour Technol ; 357: 127267, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35526715

RESUMO

The study examines the role of magnetite (1-150 mg/L) at the interface of Bacillus subtilis-electrode under poised-condition (-0.2 V) for product-formation and catalytic-conduct with the relative-gene-expression encoding lactate dehydrogenase (lctE), pyruvate dehydrogenase (pdhA), acetate kinase (ackA), pyruvate carboxylase (pycA), and NADH dehydrogenase (ndh). The magnetite load of 25 mg/L showed positive influence on acidogenesis resulting in H2 production of 264.7 mol/mL and fatty acids synthesis of 3.6 g/L. Additionally, this condition showed higher succinic acid productivity (2.8 g/L) which correlates with the upregulated pycA gene and fumarate to succinate redox peak. With 10 mg/L loading, production of higher acetic acid (3.1 g/L) along with H2 (181.6 mol/mL) was depicted wherein upregulation of pdhA, ackA and ndh genes was observed. In absence of magnetite, lctE gene was upregulated which resulted higher lactate production. The findings suggest that the mutual-interactions between magnetite-active sites of specific enzymes enhances the biocatalytic activity triggering product-formation.


Assuntos
Bacillus subtilis , Óxido Ferroso-Férrico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Óxido Ferroso-Férrico/metabolismo , Piruvato Carboxilase/metabolismo , Ácido Succínico/metabolismo
15.
World J Microbiol Biotechnol ; 38(7): 121, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35635589

RESUMO

A magnetosome-producing bacterium Acidithiobacillus ferrooxidans BYM (At. ferrooxidans BYM) was isolated and magnetically screened. The magnetosome yield from 0.5896 to 13.1291 mg/g was achieved under different aeration rates, ferrous sulfate, ammonium sulfate, and gluconic acid concentrations at 30 â„ƒ. TEM observed 6-9 magnetosomes in size of 20-80 nm irregularly dispersed in a cell. STEM-EDXS and HRTEM-FFT implied that the elongated-prismatic magnetite magnetosomes with {110} crystal faces grown along the [111] direction. Whole-genome sequencing and annotation of BYM showed that 3.2 Mb chromosome and 47.11 kb plasmid coexisted, and 322 genes associated with iron metabolism were discovered. Ten genes shared high similarity with magnetosome genes were predicted, providing sufficient evidence for the magnetosome-producing potential of BYM. Accordingly, we first proposed a hypothetic model of magnetosome formation including vesicle formation, iron uptake and mineralization, and magnetite crystal maturation in At. ferrooxidans. These indicated that At. ferrooxidans BYM would be used as a commercial magnetosome-producing microorganism.


Assuntos
Acidithiobacillus , Magnetossomos , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Óxido Ferroso-Férrico/metabolismo , Ferro/metabolismo , Magnetossomos/química
16.
Environ Microbiol Rep ; 14(5): 804-811, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641250

RESUMO

Application of ferric iron is conventionally considered to inhibit methanogenesis in anoxic environments. Here we show that Methanosarcina mazei zm-15, a strain isolated from the natural wetland of Tibetan plateau, is capable of Fe(III) reduction, which significantly promotes its growth and methanogenesis. We grew Ms. mazei zm-15 in a medium containing acetate supplemented with Fe(III) in ferric citrate or ferrihydrite and to some cultures anthraquinone-2,6-disulfonate (AQDS) was applied as an electron shuttle. The reduction of Fe(III) species occurred immediately. Ferric citrate was more readily reduced than ferrihydrite. The X-ray diffraction spectra analysis showed the formation of magnetite from ferrihydrite and amorphous reduced products from ferrihydrite plus AQDS. The analysis of protein contents revealed that Fe(III) reduction contributed 36%-46% of the cell growth. The growth yield, estimated as protein increment per acetate consumed for Fe(III) reduction, increased by 20- to 30-fold compared with methanogenesis, which is in consistence with the difference in free energy available by Fe(III) reduction relative to methanogenesis. We propose that the outer-surface multiheme c-type cytochrome predicted from Ms. mazei zm-15 genome serves as the terminal reductase with the energy-converting hydrogenase and F420 H2 dehydrogenase involved in electron transport chain for Fe(III) reduction. The findings shed a light to better understand the ecophysiology of Methanosarcina in anaerobic environments.


Assuntos
Compostos Férricos , Hidrogenase , Acetatos/metabolismo , Antraquinonas , Citocromos/metabolismo , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Hidrogenase/metabolismo , Ferro/metabolismo , Methanosarcina/metabolismo , Oxirredução
17.
Bioresour Technol ; 350: 126943, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35247557

RESUMO

Anaerobic sequential batch tests treating phenol and benzoate were conducted to evaluate the potential of magnetite supplementation to improve methanogenic degradation of phenol and benzoate, and to identify active microbial communities under each condition. Specific CH4 production rates during anaerobic digestion were 218.5 mL CH4/g VSS/d on phenol and 517.6 mL CH4/g VSS/d on benzoate. Magnetite supplementation significantly increased methanogenic degradation of phenol by 9.0-68.0% in CH4 production rate, and decreased lag time by 7.9-48.0%, with no significant reduction in CH4 yield. Syntrophorhabdus, Sporotomaculum, Syntrophus, Syntrophomonas, Peptoclostridium, Soehngenia, Mesotoga, Geobacter, Methanosaeta, Methanoculleus, and Methanospirillum were revealed as active microbial communities involved in anaerobic digestion of phenol and benzoate. Magnetite-mediated direct interspecies electron transfer between Geobacter, Peptoclostridium, and Methanosaeta harundinacea could contribute to this improvement.


Assuntos
Óxido Ferroso-Férrico , Microbiota , Anaerobiose , Benzoatos , Reatores Biológicos , Suplementos Nutricionais , Óxido Ferroso-Férrico/metabolismo , Metano/metabolismo , Fenol
18.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110403

RESUMO

Magnetosomes are lipid-bound organelles that direct the biomineralization of magnetic nanoparticles in magnetotactic bacteria. Magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. However, the underlying mechanisms of magnetosome membrane growth regulation remain unclear. Using cryoelectron tomography, we systematically examined mutants with defects at various stages of magnetosome formation to identify factors involved in controlling membrane growth. We found that a conserved serine protease, MamE, plays a key role in magnetosome membrane growth regulation. When the protease activity of MamE is disrupted, magnetosome membrane growth is restricted, which, in turn, limits the size of the magnetite particles. Consistent with this finding, the upstream regulators of MamE protease activity, MamO and MamM, are also required for magnetosome membrane growth. We then used a combination of candidate and comparative proteomics approaches to identify Mms6 and MamD as two MamE substrates. Mms6 does not appear to participate in magnetosome membrane growth. However, in the absence of MamD, magnetosome membranes grow to a larger size than the wild type. Furthermore, when the cleavage of MamD by MamE protease is blocked, magnetosome membrane growth and biomineralization are severely inhibited, phenocopying the MamE protease-inactive mutant. We therefore propose that the growth of magnetosome membranes is controlled by a protease-mediated switch through processing of MamD. Overall, our work shows that, like many eukaryotic systems, bacteria control the growth and size of biominerals by manipulating the physical properties of intracellular organelles.


Assuntos
Proteínas de Bactérias/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Organelas/metabolismo , Serina Proteases/metabolismo , Óxido Ferroso-Férrico/metabolismo , Proteólise , Proteômica/métodos , Serina Endopeptidases/metabolismo
19.
Nanoscale ; 13(48): 20396-20400, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34860229

RESUMO

Magnetite-binding proteins are in high demand for the functionalization of magnetic nanoparticles. Binding analysis of six previously uncharacterized proteins from the magnetotactic Deltaproteobacterium Desulfamplus magnetovallimortis BW-1 identified two new magnetite-binding proteins (Mad10, Mad11). These proteins can be utilized as affinity tags for the immobilization of recombinant fusion proteins to magnetite.


Assuntos
Deltaproteobacteria , Nanopartículas de Magnetita , Magnetossomos , Magnetospirillum , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Deltaproteobacteria/metabolismo , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo
20.
J Alzheimers Dis ; 84(1): 377-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569962

RESUMO

BACKGROUND: The coexistence of magnetite within protein aggregates in the brain is a typical pathologic feature of Alzheimer's disease (AD), and the formation of amyloid-ß (Aß) plaques induces critical impairment of cognitive function. OBJECTIVE: This study aimed to investigate the therapeutic effect of proton stimulation (PS) targeting plaque magnetite in the transgenic AD mouse brain. METHODS: A proton transmission beam was applied to the whole mouse brain at a single entrance dose of 2 or 4 Gy to test the effect of disruption of magnetite-containing Aß plaques by electron emission from magnetite. The reduction in Aß plaque burden and the cognitive function of the PS-treated mouse group were assayed by histochemical analysis and memory tests, respectively. Aß-magnetite and Aß fibrils were treated with PS to investigate the breakdown of the amyloid protein matrix. RESULTS: Single PS induced a 48-87%reduction in both the amyloid plaque burden and ferrous-containing magnetite level in the early-onset AD mouse brain while saving normal tissue. The overall Aß plaque burden (68-82%) and (94-97%) hippocampal magnetite levels were reduced in late onset AD mice that showed improvements in cognitive function after PS compared with untreated AD mice (p < 0.001). Analysis of amyloid fibrils after exposure to a single 2 or 4 Gy proton transmission beam demonstrated that the protein matrix was broken down only in magnetite-associated Aß fibrils. CONCLUSION: Single PS targeting plaque magnetite effectively decreases the amyloid plaque burden and the ferrous-containing magnetite level, and this effect is useful for memory recovery.


Assuntos
Doença de Alzheimer , Óxido Ferroso-Férrico/metabolismo , Ferro/toxicidade , Memória/fisiologia , Oxirredução , Placa Amiloide/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/radioterapia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Terapia com Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...